Algebraic approximations of fibrations in abelian varieties over a curve

نویسندگان

چکیده

For every fibration f : X → B f : \to B with alttext="upper X"> encoding="application/x-tex">X a compact Kähler manifold, encoding="application/x-tex">B smooth projective curve, and general fiber of alttext="f"> encoding="application/x-tex">f an abelian variety, we prove that has algebraic approximation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abelian Varieties over Large Algebraic Fields with Infinite Torsion

Let A be a non-zero abelian variety defined over a number field K and let K be a fixed algebraic closure of K. For each element σ of the absolute Galois group Gal(K/K), let K(σ) be the fixed field in K of σ. We show that the torsion subgroup of A(K(σ)) is infinite for all σ ∈ Gal(K/K) outside of some set of Haar measure zero. This proves the number field case of a conjecture of W.-D. Geyer and ...

متن کامل

Torsion on Abelian Varieties over Large Algebraic Extensions

Let K be a finitely generated extension of Q and A a non-zero abelian variety over K. Let K̃ be the algebraic closure of K and Gal(K) = Gal(K̃/K) the absolute Galois group of K equipped with its Haar measure. For each σ ∈ Gal(K) let K̃(σ) be the fixed field of σ in K̃. We prove that for almost all σ ∈ Gal(K) there exist infinitely many prime numbers l such that A has a non-zero K̃(σ)-rational point ...

متن کامل

Abelian Points on Algebraic Varieties

We attempt to determine which classes of algebraic varieties over Q must have points in some abelian extension of Q. We give: (i) for every odd d > 1, an explicit family of degree d, dimension d − 2 diagonal hypersurfaces without Qab-points, (ii) for every number field K, a genus one curve C/Q with no K ab-points, and (iii) for every g ≥ 4 an algebraic curve C/Q of genus g with no Qab-points. I...

متن کامل

Abelian varieties over finite fields

A. Weil proved that the geometric Frobenius π = Fa of an abelian variety over a finite field with q = pa elements has absolute value √ q for every embedding. T. Honda and J. Tate showed that A 7→ πA gives a bijection between the set of isogeny classes of simple abelian varieties over Fq and the set of conjugacy classes of q-Weil numbers. Higher-dimensional varieties over finite fields, Summer s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebraic Geometry

سال: 2021

ISSN: ['1534-7486', '1056-3911']

DOI: https://doi.org/10.1090/jag/791